Rechargeable Lithium battery

Operation and Maintenance manual

Product Model: <u>SGH48100T</u>

Product Specifications: 51.2V 100Ah

Version: V-00

Content

1. Information	1
1.1Validity	1
1.2Target Group	1
1.3 Levels of warning messages	1
1.4 Symbol Description	2
1.4.1 Symbols on products label	2
1.4.2 Other symbols	3
1.5 Abbreviation Description	3
2. Safety	4
2.1 Safety precautions	4
2.2 Safety instructions	5
2.2.1 Safety gear	5
2.2.2 Emergency safety measures	5
2.2.3 Other Tips	6
3. Product Overview	7
3.1 Introduction	7
3.2 Features	8
3.3 Specification	9
3.3.1 Dimension	9
3.3.2 Parameters	9
3.3.3 Panel Interface	11
3.4 Protection function	14
4 Installation	16
4.1 Preparation	16
4.1.1 Safety Compliance	16
4.1.2 Environment	16
4.1.3 Tools	17
4.2 Inspection	
4.2.1 Unpacking	
4.2.2 Scope of delivery	
4.3 Start Installation	20
4.3.1 Remainder	20
4.3.2 Procedures	21
4.3.3 Tips	21
5. Cable connection and commissioning	22
5.1 Get battery ready	
5.2 Grounding cable connection	22
5.3 Communication cable connection	22
5.4 DC power cable connection	23
5.5 Connecting with inverter	24
5.6 Commissioning	27
5.7 Switch off battery	

5.8 Troubleshooting and FAQ	
6. Transport, Storage	
7. Disposal of battery	
Appendix I	
••	

1. Information

1.1 Validity

This document is valid for: SGH48100T Battery Pack.

1.2 Target Group

This document is intended for qualified persons and operators. Only qualified persons are allowed to perform the activities marked in this document with a warning symbol and the caption "Qualified person". Qualified persons must have the following skills:

- Knowledge of how lithium iron phosphate batteries work and are operated.
- Knowledge of how an energy storage system (including PV/battery/hybrid inverter, MPPT, Meter, Distribution box etc.) works and is operated.
- Knowledge of local applicable connection requirements, standards, and directives.
- Training in the installation and commissioning of electrical devices, batteries.
- Training in how to deal with the dangers and risks associated with installing, repairing and using electrical devices, batteries.

1.3 Levels of warning messages

The following levels of warning messages may occur when handling the product

Indicates a hazardous situation which, if not avoided, will result in death or serious injury.

WARNING

Indicates a hazardous situation which, if not avoided, could result in death or serious injury.

Indicates a hazardous situation which, if not avoided, could result in minor or moderate injury or product

permanent damage.

Indicates a situation which, if not avoided, can result in property damage or product not work or accelerated product damage

1.4 Symbol Description

1.4.1 Symbols on products label

Label	Definition
<u>A</u>	Beware of electrical shock
	Do not place the battery within children/pet touchable area.
	Do not place the battery near heat source and flammable material
	Do not expose the battery to direct sunlight, rain and snow.
	Do not short circuit the battery

Recycle label
WEEE designation

1.4.2 Other symbols

Label	Definition
Qualified person	Indicates activities that can only be performed by qualified persons
	Grounding point

1.5 Abbreviation Description

Abbreviation	Definition	
Battery/battery pack/battery module	Single SGH48100T rechargeable lithium iron phosphate	
	battery pack including cells, BMS and enclosure etc.	
Battery system/cluster	Multiple SGH48100T battery pack connected in parallel with	
	power, communication and grounding cables and installation	
	auxiliaries.	
BMS	Battery management system	
	Electronical Unit to ensure lithium cells' safety and display	
	information or control the battery work mode.	
SOC	State of charge	
	The battery state of charge refers to the percentage of the	
	remaining capacity and rated capacity of the battery.	
SOH	State of health	
	The battery health status refers to the percentage between the	
	full charged capacity and the rated capacity of the battery.	
DIP switch	Dual in-line package switch	
COCP	Charge over current protection	
DOCP	Discharge over current protection	
COVP	Cell over voltage protection	
POVP	Pack over voltage protection	
СНТР	Charge high temperature protection	
DHTP	Discharge high temperature protection	

CUVP	Cell under voltage protection
PUVP	Pack under voltage protection
CLTP	Charge high temperature protection
DLTP	Discharge high temperature protection
SCP	Short circuit protection

2. Safety

2.1 Safety precautions

🚹 DANGER

Explosion risk

- Do not impact the battery with heavy objects.
- Do not squeeze or pierce the battery pack.
- Do not throw the battery pack into the fire.

WARNING

Fire risk

- Do not expose the battery pack to the condition over 80°C.
- Do not put the battery near a heat source, such as a fireplace.
- Do not expose the battery pack to direct sunlight or raining.

Electric shock risk

- Do not allow non-qualified person to disassemble the battery pack.
- Do not touch the battery pack with wet hands.
- Do not expose the battery pack to moisture or liquid environment.

Damage risk

- Do not short-circuit or reverse connect the battery.
- Do not use chargers or charging devices unapproved by the manufacturer to charge the battery.
- Do not mix batteries from different manufacturers or different kinds, types or brands.

2.2 Safety instructions

The battery has been designed and tested in accordance with international (such as UN38.3 etc.) safety requirements. However, due to various factors during the whole lifetime process, Manufacturer cannot guarantee absolute safety, in order to prevent personal injury and property damage and ensure long-term operation of the battery, please do read the below section carefully to operate the battery and handle emergency situations.

2.2.1 Safety gear

It is required to wear the following safety gear when installing and handling the battery pack.

Insulated gloves

Safety Glasses

Safety Shoes

2.2.2 Emergency safety measures

Water invasion

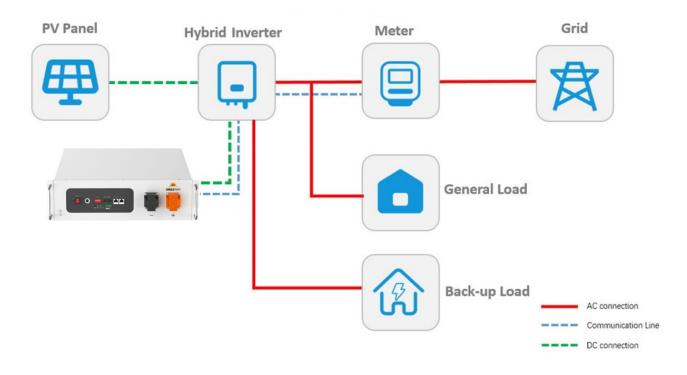
Please cut off the AC power supply of the system first and then disconnect all switched under the premise of ensuring safety.

Electrolyte or gas leakage

If the battery pack leaks electrolyte, avoid contact with the leaking liquid or gas. If one is exposed to the leaked substance, immediately perform the actions described below.

• Gas Inhalation: Evacuate the people in the contaminated area and seek medical aid immediately.

- Eye Contact: Flush your eye with clean and flowing water for 15 min, and seek medical aid immediately.
- Skin Contact: Thoroughly rinse the exposed area with soap and water to be sure no chemical or soap is left on them, and seek medical aid immediately.
- Ingestion: Induce vomiting, and seek medical help immediately.


In case of fire situations, please use carbon dioxide fire extinguisher rather than liquid to put out fires.

2.2.3 Other Tips

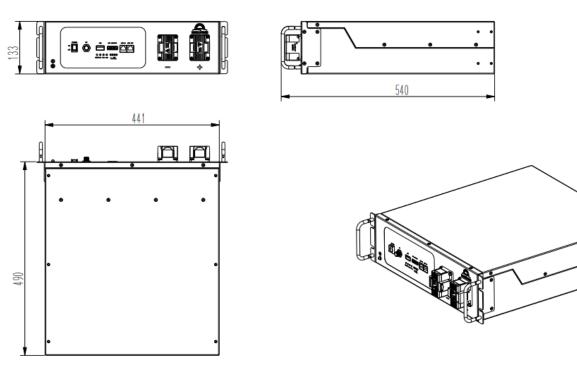
- All the product are strictly inspected before shipment, please contact your supplier for replacement if you notice there's any defectives such as swelling.
- Do not disassemble batteries and components, otherwise the manufacturer will not be responsible for any damage caused by unauthorized disassembly or repair.
- Do enable the battery to be safely grounded before use to make sure the system in safe and normal operation.
- Please ensure that the electric parameters of these devices are compatible mutually before connecting the battery to other devices.
- Please take the environmental factors into careful considerations to ensure that the system can work in a suitable condition as the environment and storage methods have a certain impact on the service life and reliability of this product.

3. Product Overview 3.1 Introduction

The SGH48100T battery is designed for residential application and works as a storage unit in the photovoltaic system. It is a 51.2V lithium battery system, with BMS inside. It could be operated in both on-grid, back-up and off-grid modes with compatible inverters. Below is the general schematic of an ac-coupled system with the batteries.

CAUTION This electrical connection in this diagram is only for illustration, please follow the Manual suggestions of related devices and operate in accordance with locally

3.2 Features


- Highest safety, battery is made from LiFePO4 chemistry and comply with highest international safety and transport standard.
- Modular and flexible, support up to 32 batteries connect together to expand the system energy.
- Built-in pre-charge circuit to avoid rush current when connecting with different inverter/chargers.
- Automatic dynamic addressing function when connected multiple batteries together.
- Support a maximum of 96% DOD under off-grid and back-up application
- Built in BMS provide warning and protection functions including over-discharged, over-charged, over-

current, short-circuit and high/low temperature.

- LiFePO4 as cathode material and automatic balancing function to meet longer cycle life
- Compact size and light weight for easy installation and maintenance.
- Multiple installation bracket to adopt with different customers' requirement.
- LED display, CAN/RS485 port for external communication and upgrade the BMS firmware.
- Rapid shutdown function for North American market.

3.3 Specification

3.3.1 Dimension

3.3.2 Parameters

Items	SGH48100T	
Rated voltage	51.2V	
Max. voltage range	44.8~57.6V, Shipping voltage>51.2V	
Charge voltage	56.0V	
Float charge voltage	54.6V	
Nominal energy@0.5C	5.12KWh	
Usable energy@0.5C	4.92kWh	
Nominal capacity@0.5C	100Ah	
Dimension	490*441*133mm (19.3*17.3*5.2 inch)	
Weight	~47kg (103lb)	
Standard charge current	≤50A	
Max. charge current	70A	
Standard discharge current	≤50A	

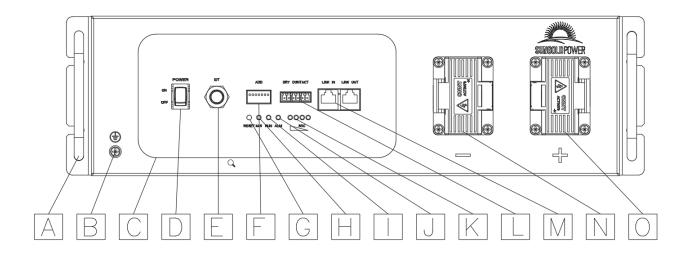
Max. discharge current	100A (initial temp. ≤86°F(30°C))	
Peak discharge current	101~119A@5	mins 120~200A@15S
Communication	R	S485 /CAN
Max parallel number		32pcs
Operation temperature ¹	Charge: 14°F to 122°F(-10~50°C)	
	Discharge:-4°F to 122°F(-20~50°C)	
Heating opening condition ²	-13°F(-25°C)≤T≤41°F(5°C)@I≥0.08C	
Heating completion condition ³	T≥53.6°F(12°C)	
	32°F(0°C) <t<86°f(30°c)< td=""><td>< 6 months</td></t<86°f(30°c)<>	< 6 months
Storage temperature	14°F(-10°C) <t<113°f(45°c)< td=""><td>< 3 months</td></t<113°f(45°c)<>	< 3 months
@off mode	Recommended environment	59°F to 95°F (15∼35°C),
		5~75%RH

1. The optimum operating temperature range is from 59° F to 86° F(15°C to 30°C), Frequent exposure

to the harsh temperatures may worsen the performance of the battery pack and cycle life.

2. The current of the heating film is calculated in addition and is not added to the current detected by the BMS.

3. If the battery system is fully charged for the first time, the heating is stopped after a delay of 1 hour.


4. The heater operates within a temperature range of -13°F to 41°F (-25°C to 5°C).

Condition 1: When the battery temperature falls between 14°F to 41°F (-10°C to 5°C), the heater activates, initiating a low-current charging process. The heater will be off at 53.6°F (12°C), but regular charging of the battery continues.

Condition 2: In cases where the battery temperature is below 14°F (<-10°C), the charging current is exclusively directed to the heating system until the battery temperature rises above 14°F (-10°C). Once this threshold is reached, the heater operates as described in Condition 1.

Please note that the heating system operation does not impact the State of Charge (SOC) of the battery.

3.3.3 Panel Interface

No.	Items	Usage description	Remark
А	Handles	For handling, installation and disassembly of battery	
В	Ground	Used to connect battery with ground	
С	PET	Decorative film	
D	Power switch	Used to Power on/off battery	
E	IOT	Used to connect with cloud platforms	
F	DIP	Used to set the RS485 baud rate and inverter protocol choosing	
G	Reset	Used to sleep(3s)/awake(3s)/reset(6~10s) BMS in power on mode.	
H	M/S	Used to indicate the module is Master or Slave battery	Single mode:OFF Parallel mode: ON- Master battery OFF- Slave battery
I	RUN	Used to show battery is in running status when lighting or flashing	
J	ALM	Used to show battery Alarm/Protection status	
К	SOC	Used to show battery real-time SOC	
L	Dry contact	1 channel input signal 2 channels output signal	
М	Link IN Link OUT	For internal and external communication	
Ν	Negative terminal	Used to connect the inverter/charger	
0	Positive terminal	Used to connect the inverter/charger	

3.3.3.1 L: Dry contact

PIN	Туре	
1	NO Output 1. Charge enable/disable signal	
2	NO Output1, Charge enable/disable signal	
3	NO Output2, discharge enable/disable signal	
4	······································	
5	Passive INPUT signal.	
6	Rapid Shutdown function for US	

3.3.3.2 M: Link IN / Link OUT

Port	Pin No.	Definition	Remarks
Link IN	1	RS485-B1	1.Used to connect with
	2	RS485-A1	external devices to establish
	3	SGND	communication.
	4	CAN-H	2.Used to connect with
	5	CAN-L	upper battery pack Link
	6	SGND	OUT.
	7	RS485-A1	
	8	RS485-B1	
Link OUT	1	RS485-B2	Used to connect with
	2	RS485-A2	downward battery pack Link
	3	SGND	IN.
	4	CAN-H	
	5	CAN-L	
	6	SGND	
	7	RS485-A2	
	8	RS485-B2	

3.3.3.3: DIP addressing

DIP				Remarks				
RS485 baud rate	Undefined			Protocol				
1	2	3	4	5	6	7		
ON: 115200	Reser paralle	ved for el and	•		0	0	Protocol ID0	
OFF: 9600	functic	n			1	0	Protocol ID1	
					0	1	Protocol ID2	
					1	1	reserved	
Keep all batteries	Keep	default	setting		Master: according to inverter			
the same setting					Brand Slave: keep default setting			

Note:

Only the master battery needs to set the Protocol ID and keep all slave battery default settings after choosing the protocol ID, the battery will auto-detect the inverter information and corresponding to get into running, restart to take effect after setting a new DIP sequence.

CANbus (Connection	RS485 Co	nnection	DIP setting (Master battery)
Protocol ID	INVERTER	Protocol ID	INVERTER	
CAN 1	Victron/SMA/Studer Innotec/Sofar	RS485 1	SUNGOLDPOWER SPH/Voltronic/RCT/ MPP/Alpha outback/ Phocos	ON 1 2 3 4 5 6 7 XOOOOOO
CAN 2	SUNGOLDPOWER SG /SolArk/Solis/Goodwe/Deye/ Growatt/SAJ/LUXPOWER/M egarevo/INVT/Sermatec/MU ST/Sunsynk	RS485 2	SUNGOLDPOWER SPH	ON 1 2 3 4 5 6 7 X100010
CAN 3	Schneider	RS485 3	LUX POWER	ON 1 2 3 4 5 6 7 X010001

Fail to follow the DIP switch setting will cause the communication fault between battery and inverter, for more detail setting with different inverter/charger, please contact your supplier for consultation.

3.3.3.4 RUN/ALM/SOC

Mode Status	Statue	RUN	ALM	.M LED indica		ndicato	r	Description
	Status	•	•	•	•	•	•	Description
Power off	-	OFF	OFF	OFF	OFF	OFF	OFF	All OFF
Standby	Normal	FLASH1	OFF	Acc	According to battery SOC		See note	
Stanuby	Warning	FLASH1	FLASH3	AUU		Dallery	/ 300	See lible
	Normal	ON	OFF	Acco	ording to	battery	SOC	See note
Charge	Warning	ON	FLASH3	(highe	st SOC	LED: F	LASH2)	See note
Charge	COCP	FLASH1	OFF	Acco	ording to	battery	/ SOC	Stop charging
	Normal	FLASH3	OFF			Coo roto		
	Warning FLASH3 FLAS		FLASH3	According to battery SOC			See note	
Discharge	CUVP/PUVP	OFF	FLASH3	OFF	OFF	OFF	OFF	Stop discharging
	DOCP	OFF	ON	OFF	OFF	OFF	OFF	Stop discharging
Temperat ure	CHTP/DHTP CLTP/DLTP	OFF	ON	OFF	OFF	OFF	OFF	Stop charging/dis charging
Failure	Cell/NTC failure Sensor failure MOS failure Reversed polarity /SCP	OFF	ON	OFF	OFF	OFF	OFF	Stop charging/dis charging

Note: 'Warning' including items of cell imbalanced/low voltage/high current/high&low temperature.

FLASH Type	ON	OFF
FLASH1	0.25S	3.75S
FLASH2	0.5S	0.5S
FLASH3	0.5S	1.5S

3.4 Protection function

ltems	Description	Remark	
Charge end	The BMS will stop charging if any cell or PACK voltage reach		
COVP	the protection value and it will be auto-released only when both		
POVP	Pack and cell voltage back to the release voltage range or there		
	is efficient discharge current.		
Discharge end	The BMS will stop discharging if any cell or PACK voltage is	Can Automatic	
CUVP	under the protection value and it will be released only when all	recovery. Please charge	

PUVP	the cell voltage back to the release voltage range or there is	timely, otherwise it may
	efficient charge current.	be in Low-power mode
		to be over-discharged
		and damage battery.
СНТР	The BMS will stop charging or discharging or both if any	Automatic recovery
DHTP	cell/environment/MOS temperature is beyond the range.	when temperature falls.
CLTP	The BMS will stop charging or discharging or both if any	Automatic recovery
DLTP	cell/environment/MOS temperature is under the range.	when temperature rise.
COCP	The BMS will stop charging when the charging current is higher	Automatic recovery. If
	than the protection value. And it will release from the protection	locked after three
	when the system delays time is met.	consecutive times,
		manual intervention is
		required.
DOCP	The BMS will stop discharging when the discharging current is	Automatic recovery. If
	higher than the protection value. And it will release from the	locked after three
	protection when the system delays time is met	consecutive times,
		manual intervention is
		required.
SCP	The BMS will stop charging when detect short circuit or reversed	Charge to release.
Reversed polarity	polarity.	Manual press reset.
Temperature, Voltage,	Enter the failure mode, manual intervention is required no	Manual intervention.
Current sensor failure	charging and discharging.	
Sleep mode	After reaching a certain condition, BMS will enter dormancy	Charge, press reset or
	mode to reduce BMS consumption	restart to activate.

Please re-charge the battery via MPPT, grid/generator or other energy source

within 24h if the battery is over discharged, otherwise, it may be damaged.

Manually short-circuit and reverse the battery will void the warranty.

4 Installation

4.1 Preparation

4.1.1 Safety Compliance

The system installation must be finished by qualified person(s), During the whole installation process, please strictly follow the local safety regulations and related operating procedures.

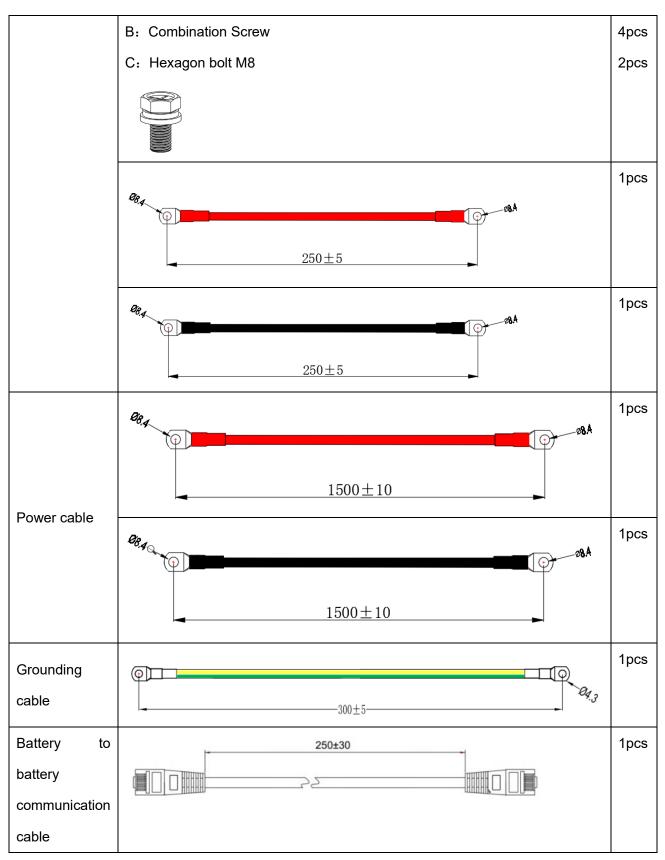
4.1.2 Environment

Category	Description
Working temperature	14 to 122° F(-10℃-50℃)(maximum operating range)
······································	59 to 86°F(15℃-30℃) (optimal temperature)
Relative humidity	5%~90%, No condensation
Altitude	<3000m
Safety requirement	 Do not expose the battery to direct sunlight, rain and snow. Do not place the battery within children/pet touchable area. Do not place the battery near heat source and flammable material Do not drop, deform, impact, cut or spearing with a sharp object. Do not put heavy things on battery. Do not disassemble the battery without Manufacturer's permission. No conductive dust and water or other liquid to contact battery. Follow the emergency measure if there is water invasion or electrolyte and gas leakage. Contact your supplier within 24 hours if any product failure happens.

4.1.3 Tools

Tools	
Torque screwdriver	Multi-meter
Torque wrench	Cable crimper
Wire stripper	Tape measure
Flat-head screwdriver	Phillips-head screwdriver
Wire stripper	Drill
Phillips-screwdriver bit	

4.2 Inspection


4.2.1 Unpacking

- Please load and unload it in accordance with the specified requirements to prevent sun and rain when you receive the equipment.
- Please check and confirm the goods (such as quantity, appearance, etc.) according to the "scope of delivery " before unpacking.
- Do light take and put during unpacking process to protect the surface coating of the object;
- Please record and feedback to the manufacturer if the inner packing is damaged after unpacking.

4.2.2 Scope of delivery

Check the scope of delivery for completeness and any externally visible damage. Contact your supplier for supplementary delivery if the listed material is incomplete or damaged.

General mate	rials		
(Battery unit)			
Battery	Pack *1pcs	Manual *1pcs	
Туре	Detail		Qty.
Rack mounted	A: Float nuts M6		6pcs
kits	C		

For inverter communication PIN definition detail, please check Appendix I

Keep the unused cable pins NULL to avoid affecting the closed loop communication.

A ground connection of communication cable may be required from some inverters, please follow the rules from inverter manufacture.

4.3 Start Installation

Qualified person

4.3.1 Remainder

Please check again the following conditions or equipment whether meet the requirements before installation:

- Check if there's enough space for installation, and if the load-bearing capacity of the bracket or cabinet meets the weight requirements.
- Check whether the power cable pair(s) used meets the maximum current requirement for operation.
- Check whether the overall layout of power supply equipment and batteries at the construction site is reasonable.
- Check whether the installer is wearing anti-static wristband.
- Check whether there're two people on the construction site for installation work.
- Check if there's potential risks at location of installation site, e.g flooding, sun exposure, corrosion,

and salt spray.

4.3.2 Procedures

Injuries may result if the product is lifted incorrectly or dropped while being transported

or mounted.

Wear suitable personal protective equipment for all work on the product.

Ensure that no lines are laid in the wall which could be damaged when drilling holes.

4.3.2.1 Rack mounted

i. Take the battery pack out from carton.

ii. Get the Rack or cabinet ready and place it horizontally at a reasonable location.

iii. Place the battery on the rack or cabinet tray via manual-lift, Insert the screws and fasten the battery to the rack or cabinet

iv. Finish the cable connection

4.3.3 Tips

4.3.3.1 Installation not allowed

Direct upside down	Left side flip	Right side flip
x	×	×

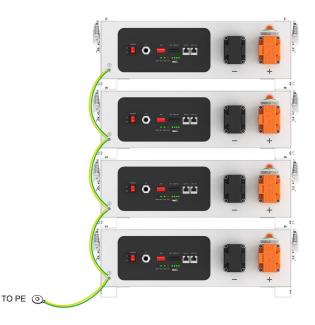
5. Cable connection and commissioning

5.1 Get battery ready

5.1.1 Ensure all the battery is in OFF mode, check and confirm the installation is tighten and stable.

5.1.2 Check the number and specification of cable kit accessories are correct according to the Scope of

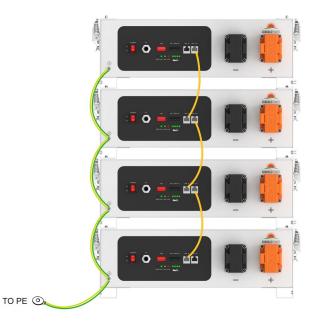
delivery item, if you are making cable yourself, please follow manufacturer's requirements.


5.1.3 Switch on all battery individually before wiring, check whether there is any alarm/protection information, if yes, turns to troubleshooting. Then switch off all batteries.

5.2 Grounding cable connection

5.2.1 Take out the grounding screw on the battery panel, and get the cable conductor through it.

5.2.2 Fix them together, with a cylinder screwdriver and tighten it.

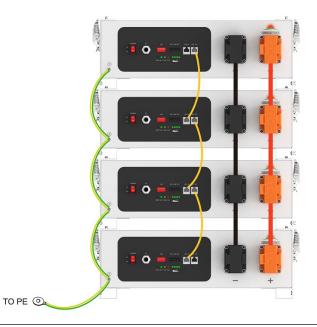

5.2.3 Connect the grounding cable with next battery module.

5.3 Communication cable connection

5.3.1 Take out battery to battery communication cable.

5.3.2 Confirm the location of Master battery, insert the RJ45 plug into the Link Out port and connect the other side to next battery Link IN port, daisy chained all batteries.

Note: the module with empty Link IN port is Master battery



The BMS inside the battery pack will automatically terminate BOTH end of CANBUS pins, DO NOT need to plug the 120Ω terminator again.

5.4 DC power cable connection

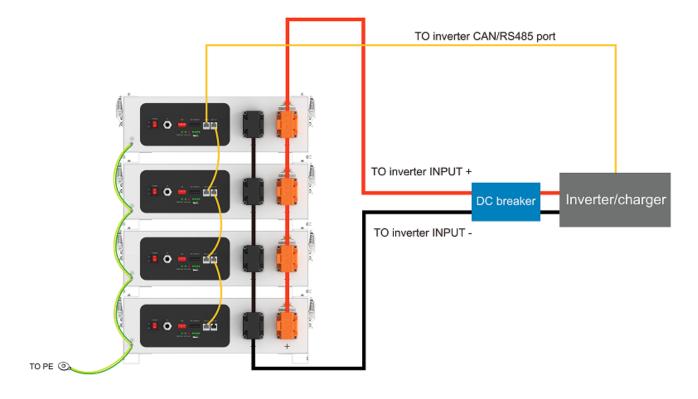
5.4.1 Take out battery to battery power parallel cable.

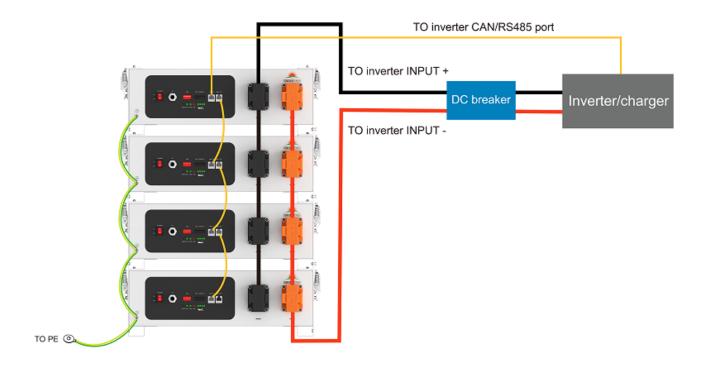
5.4.2 Lock the terminals on the battery terminals and secure tightly with nuts.

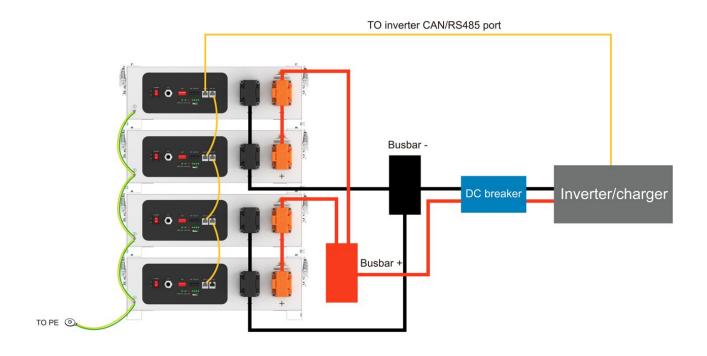
5.5 Connecting with inverter

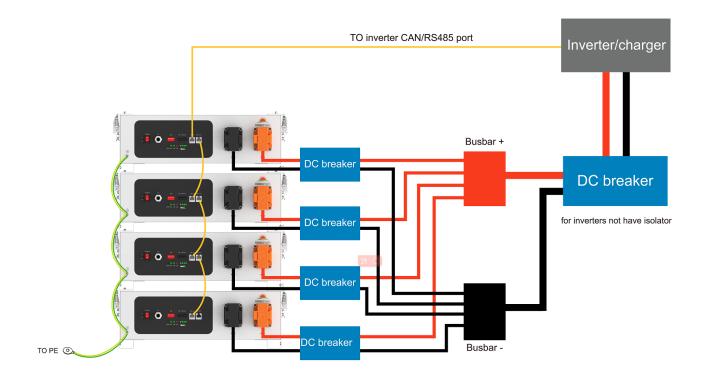
Confirm inverter AC input and PV input is disconnected before wiring connection, and the DC/ signal switch of inverter/charger is in off status.

5.5.1 Connecting Master battery Link IN port with inverter CAN or RS485 communication port via inverter communication cable (*Version I/II/III or customized*).

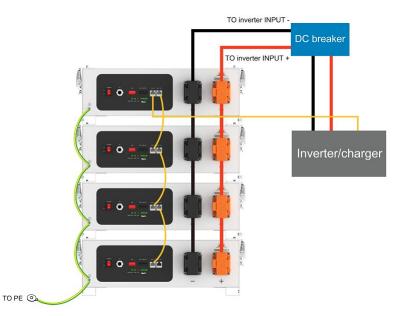

5.5.2 Connecting battery OUTPUT (+) with inverter battery INPUT (+), battery OUTPUT (-) with inverter battery INPUT (-), an external disconnection breaker between battery system and inverter is recommended, choose the corresponding power cable pair and wiring them correctly.


Note:


NOTICE


Choose the suitable disconnection breaker considering the inverter power/current, rated voltage, tripping characteristic etc.

Wiring diagram allowed:



Wiring diagram not allowed:

When multiple batteries are connected in parallel, the wires connecting the positive and negative electrodes of the inverter cannot come from the same battery. This connection mode will cause the current to be unevenly distributed among the batteries, resulting in differences in the SOC of the batteries.

The maximum communication cable length is required to be less than 15m between inverter/charge and battery. The maximum power cable length is suggested to be less than 10m between inverter/charge and battery.

The maximum tolerance current of each power cable and terminal is 125A, 100A for continuously is suggested, please use corresponding number of power cable pairs according to the field configuration and local connection requirements, standards, and directives..

5.6 Commissioning

5.6.1 Set the DIP address of the Master battery (and the Slave battery if there is any RS485 baud rate changed).

5.6.2 Switch on all battery modules, wait for 10s, make sure that only M/S led is on Master battery.

5.6.3 Turn on the breaker between the inverter and battery if there is any, then turn on the inverter/charger isolator.

5.6.4 Finish the setting on inverter/charger or any other control devices, if everything is correct, you are ready to use the system.

No.	Inverter setting parameters	Detail
1	Absorption voltage	56.0V
2	Float voltage	54.6V
3	Re-charge/Generator start voltage	≥50V
4	Re-start voltage	52V
3	Low SOC limit (Grid-tied)	10/20% (differ from inverter brand)
5	Low SOC cut-off (Off-grid)	4%
6	Low Voltage cut-off	48.0V
7	Rated charging current limited value	100A*N (N is the Quantity of the battery pack)
8	Rated discharging current limited value	100A*N (N is the Quantity of the battery pack)
9	Max. charging current limited value	200A*N (N is the Quantity of the battery pack)
10	Max. discharging current limited value	200A*N (N is the Quantity of the battery pack)
11	Force charge/ Activate	Enable

For more information to connect with different inverter/charger, please contact your supplier for technical support.

CAUTION

If your system is a back-up or off-grid system, make sure your configuration can cover the worst situation

to avoid battery to be over-discharged.

5.7 Switch off battery

5.7.1 Turn off the inverter.

5.7.2 Turn off the disconnection breaker if there is any.

5.7.3 Turn off all batteries signal switch.

5.8 Troubleshooting and FAQ

Items	Solution	Measure
Unable to start	1. Power on battery and press RESET 6s to observe	
	whether the battery can be started.	
	2. Charge the battery use a charger or inverter to provide	
	54~57.6V voltage and observe it can be started.	
Unable to charge	1. Check whether the cable connection between the battery	
	and the inverter/charger is correct.	
	2. Check whether the inverter/charger setting is correct.	
	3. Check whether the battery is in charge protection mode,	
	if yes, try to discharge the battery.	
Unable to discharge	1. Check whether the cable connection between the battery	
	and the inverter/charger is correct	If the abnormal status
	2. Check whether the battery occurs short circuit, reverse	still alive after above
	connection, pre-charge failure during connection inverter	steps, please contact
	etc.	your supplier.
	3. Check whether the battery is in discharge protection	
	mode, if yes, try to charge the battery.	If there is any other
High/Low temperature	1. Stop the battery system for a while, check whether the	situation(s) excluding in
	installation location temperature meet the requirement.	this table, turn off the
	2. Avoid continuous full charging and discharging.	fault battery, contact
High current	Check the configuration and parameters setting on the	your supplier.
	inverter/charger is correct.	
ALM always on	1. Check the fault information on the inverter APP or display	
	if possible.	
	2. Ask your supplier to offer BMS monitoring software to	
	locate the reason and back to them for solution.	
Communication fail	1. Check the communication cable type is correct and is	
	contacted well.	
	2. Check the DIP switch setting is correct.	
	3. Check the inverter protocol related setting is correct.	
	4. Check both battery and inverter are working properly.	

Q1: Battery maximum SOC is 98~99% and never goes to 100% SOC during daily cycle use, why?

This is normal and have no influence on capacity, usually BMS will calibrate the SOC to 100% when

reached cut-off current or trigger HVP, however, to avoid battery from being overcharged and to extend the cycle life as longer as possible, we left a room and set a charging profile to let battery charge slowly near full, please float the battery about 0.5~1 hour to calibrate the SOC.

Q2: 'High voltage' and 'cell unbalance' warning and alarm in rare cases, does it mean battery is damaged?

No. This is not unusual and happened on new batteries that are not balanced yet, please lower the maximum charge voltage (54.6V) and float the battery via grid or generator. If not solved, please contact your supplier.

Q3: When having multiple batteries in parallel connection, the battery on the end can't be fully charged.

Pay attention to your wiring diagram, please always follow the manual wiring advises and choose proper cable size and pair.

Q4: The current is 0A when connecting with a very small load at the situation that having multiple batteries in parallel connection, how to solve it?

Each BMS has a threshold current of 0.5A (~25W) before it begins to report, this leads the inaccurate display of the current.

Q5: SOC is not accurate or suddenly jumps to 100% during charging.

This mostly happen in off-grid applications on batteries that have not been calibrated SOC for a long time or situations that are similar to Q4 that with inverter in Idle mode or a small DC load or store the battery for a long time, we suggest fully charging at once the batteries per month refer to Q1.

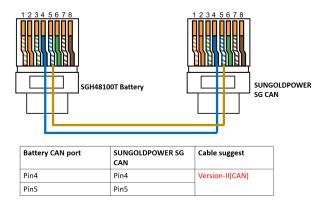
Q6: The system is still running when the inverter log shows 'internal failure' warning.

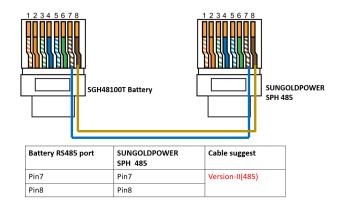
This is our logic and this warning flag indicates there is 1 or more module(s) is in communication offline from the system, the system will derating and until communication is recovered.

Q7: Inverter pulling power from Grid to charge batteries in self-consumption mode.

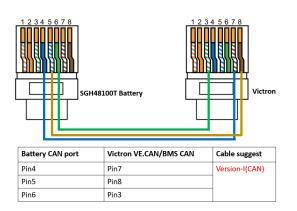
When reached certain conditions such as low state of charge etc., battery will send charge request to ask inverter to charge the batteries, to avoid this, please discharge DOD as manual suggested.

6. Transport, Storage

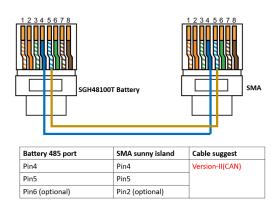

- Do not violently shake, impact or squeeze, and prevent sun and rain during the transportation.
- Do light take and put and strictly prevent falling, rolling, and heavy pressure during loading and unloading.
- The battery should be placed in a dry, clean, dark, and well-ventilated indoor environment for longterm storage, and the recommended storage temperature range is 15~30℃.
- No harmful gases, flammable and explosive products and corrosive chemical substances in the storage location.
- The batteries should be stored and transported in close to 50% SOC, do not store over 80% SOC for long time.
- If do not use for a long time, the battery needs to be charged every 6 months.
- No fall down, no pile up over 6 layers, and keep face up.

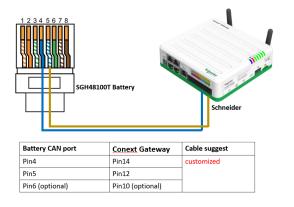

7. Disposal of battery

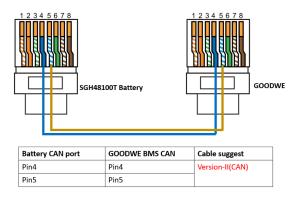
Disposal of battery must comply with the local applicable disposal regulations for electronic waste and used batteries, please review your local Battery recycling or management regulations or contact your supplier for more information.

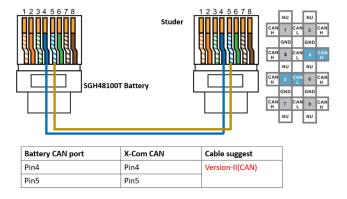

Appendix I

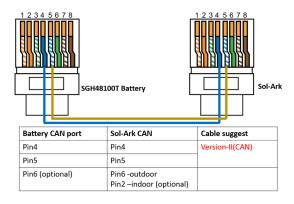
Connect with SUNGOLDPOWER SPH/SG inverter/charger

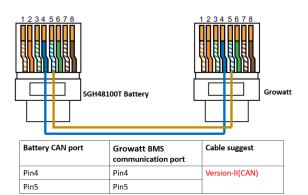


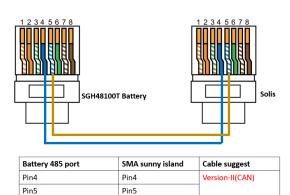

Connect with Victron GX & inverter/charger

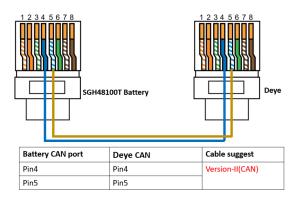

Connect with SMA inverter/charger

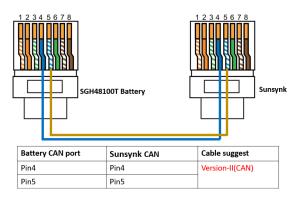

Connect with Schneider inverter/charger

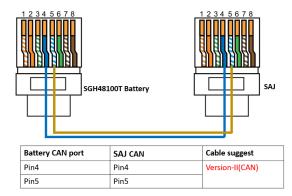

Connect with GOODWE hybrid inverter

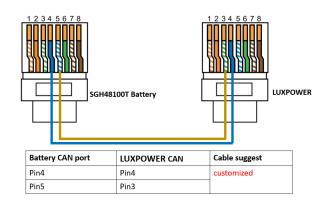

Connect with Studer inverter/charger

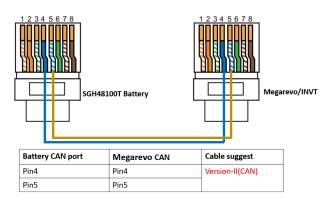

Connect with Sol-Ark hybrid inverter

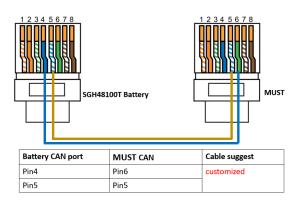

Connect with Growatt inverter

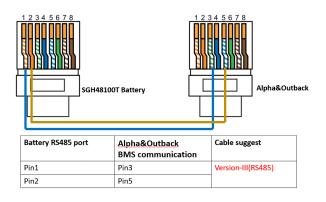

Connect with Solis inverter

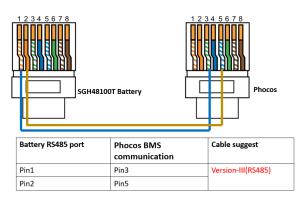

Connect with Deye hybrid inverter

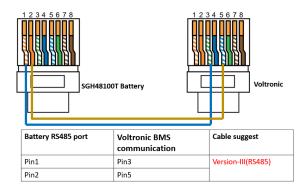

Connect with SUNSYNK hybrid inverter


Connect with SAJ hybrid inverter


Connect with LUXPOWER inverter


Connect with Megarevo/INVT inverter


Connect with MUST inverter


Connect with Alpha & Outback energy inverter

Connect with Phocos inverter

Connect with Voltronic inverter

Connect with Mpp solar inverter

